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PART |

1. INTRODUCTION

During the International Magnetospheric Study (1977-1979) and the subsequent data analysis phase, it was
demonstrated that ground-based magnetometer data incorporated with advanced computer algorithms proposed by
Fayermark (1977), Kisabeth (1979), Mishin et al. (1980), Kamide et al. (1981), and Richmond and Kamide (1987)
are a powerful remote sensing tool for investigating the global distribution of polar ionospheric electrody-
namic parameters, such as, ionospheric currents, field-aligned currents, ionospheric electric potentials,
Joule heating, etc. Furthermore, these magnetometer methods have a great advantage in spatial and temporal
coverage as compared to either satellite data or ground-based radar data, both of which require the construc-
tion of statistical, empirical models to define instantaneous and global distributions.

In order to estimate the ionospheric electrodynamics from those methods, ionospheric conductances must be
provided as an input. As discussed extensively by Kamide and Richmond (1982), the electric potential distri-
bution and the Joule heating rate are highly sensitive to the choice of ionospheric conductance. To date, the
results of these methods have been limited by the accuracy of statistical models of ionospheric conductance
resulting from precipitating particles and constructed from satellite-recorded data organized by an index of
geomagnetic activity, cf., Wallis and Budzinski (1981), Spiro et al. (1982), or Fuller-Rowell and Evans
(1987).

Owing to the introduction of a method for estimating the ionospheric conductance based on bremsstrahlung
X-ray spectral imagery acquired from satellites (Gorney et al., 1985), it is now possible to determine per-
tinent ionospheric quantities on an individual basis through the magnetogram-inversion technique combined with
such a more realistic conductance distribution. The purpose of this report is to show the results of our
modeling efforts by calculating the distribution of ionospheric electrodynamic parameters for July 23 - 24,
1983 from the ground magnetic data from 88 northern hemispheric stations. This report differs from the pre-
vious UAG Reports (Kamide et al., 1982, 1983) in that the calculation employs, for the first time, a realistic
ionospheric conductance distribution computed from "images" of precipitating electron spectra inferred from
images of bremsstrahlung X-ray spectra.

In Part I of this report, the numerical modeling method and the characteristics of the interval are
briefly described. The procedure for deducing the ionospheric conductance distribution from the limited view
of the satellite instrument and data processing methods is described in Part II. In Part III we show the
instantaneous distribution of equivalent ionospheric current, "true" ionospheric current, electrostatic poten-
tial, field-aligned current and Joule heating for each satellite crossing of the polar ionosphere., These data
products, based on a realistic conductance distribution, are provided to the scientific community to improve
our understanding of magnetospheric and ionospheric processes associated with magnetospheric substorms and
convection.

2. PROCEDURE

Figure 1 outlines the important steps required to compute ionospheric quantities from the ground magnetic
perturbations. The practical procedures of each step are summarized as follows:

(a) The magnetic variations used in this study were recorded every 5 minutes in magnetic coordinates (H
or D) or geographic coordinates (X and Y), A total of 88 stations in the northern hemisphere are used. Those
stations are listed in Table 1 and their distribution in the corrected geomagnetic coordinate system is shown
in Figure 2. Approximately 60% of the data were received in digital form from the Space Environment
Laboratory, the U.S. Geological Survey, the Canadian Department of Mines and Natural Resources, the Danish
Meteorological Institute (for Greenland) and the Finnish Meteorological Institute while the remaining 40% were
digitized from analog records. A quiet day variation was removed to eliminate the magnetic signature of Sq
currents, In this case we used July 11, 1983 as the quiet day, since the 8 Kp values were 1-, 1-, 1-, 2-, lo,
1o, 1- and 20 and ZKp = 8+. The resulting*¥alues were then transformed to the corrected geomagnetic coor-
dinate (c.g.) system of Gustafsson (1969) and labeled AXm and AYm referring to the northward and eastward
components, respectively in Figure 1,

Since the DMSP satellite takes approximately 101 minutes to orbit the earth, the ionospheric conductance
distribution can be computed only every 50 minutes if one assumes hemispheric conjugacy. Furthermore, the
time required for the satellite to complete a polar crossing and image the polar region is about 17 minutes,
Thus, as is shown in Table 2 in Part III, we averaged the four 5-minute values of the magnetic variations
which were closest to each imaging interval.

(b) For the purpose of comparison with the standard AE(12) indices, we computed the auroral electrojet
indices, AE, AU and AL, from the AXm values recorded at stations between 55° and 75° in corrected geomagnetic
Jatitude, Forty four stations met this requirement. Magnetic activity during the two day interval is briefly
discussed by these indices.

(c) The equivalent current function is calculated from a fitted magnetic potential function represented
by a spherical harmonic series to the observed ground magnetic perturbation data and estimating the portion of
this potential which results from overhead currents,
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Figure 1. Flow chart describing the important steps in the present project.

{d) The computation of the ionospheric electrical potential is made for every 1° in latitude and 1 hour
of local time from the equivalent current function and the ionospheric conductance following the method of
Kamide et al. (1981)., This process requires extensive computer computation to numerically solve a two-dimen-
sional, second-order, partial differential equation. The electric field at each grid point is obtained simply
by taking negative gradient of the electric potential, The ionospheric conductance distribution estimated
from the X-ray image is used when the image includes a significant part of the auroral zone, otherwise a sta-
tistical model is used. The statistical model is described in Ahn et al. (1983) and as UA model in Figure 1.

(e) Once the electric field and the ionospheric conductance are given, the ionospheric current vectors
are computed through Ohm's Tlaw.

(f) The field-aligned current distribution is computed as the divergence of the horizontal ionospheric
current,

(g) The scalar product of the jonospheric current vector and the electric field vector gives the Joule
heating rate.

3. METHOD

Computational details of the important steps in the flow chart of Figure 1 are summarized as follows:

(1) Equivalent Current Function

At a given time, the observed magnetic data were fitted to a magnetic potential function, V, which is
represented by a spherical harmonic series,

6 56
V(g,n) =3 > (a] cos mx +b:' sinmx ) P™ (cos 6 ) (1)
5 ne=a

m it

where ¢ and N are colatitude and east longitude, respectively. 1In this process, a total of 358 coefficients,
a and b} , are determined. The criteria of choosing n and m values and mathematical details of fitting
procedure including the smoothing technique are intensively discussed elsewhere (Kroehl and Richmond, 1979;
Kamide et al., 1982; 1983). The root-mean-square difference between computed and observed magnetic pertur-
bations is typically 15%. However, at certain times the discrepancy rises above 20%.
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Figure 2.

The Tocations of the magnetic stations whose data were used in
this study are plotted on an orthogonic projection map, in which
the plotted distance between latitude circles varies as a sine
function in colatitude. For identification of station names and
their coordinates both in geographic and corrected geomagnetic
coordinate systems, see Table 1.




It is then assumed that there is a relatively small internal contribution to the magnetic potential
cauied by a perfectly conducting layer 300 km below the earth's surface. The remaining external potential

vie) s extrapolated to 110 km altitude and converted to an equivalent ionospheric current function by the
standard procedure:

n
.1 2n+l ay (e)
¥y = w ¥l (TT_) Vn (2)
0 E
where
Vo= 2 (6,1)
n

a = Rp + 110 km
wo= 4 x 10°7 H/m

(2) TIonospheric Conductance

The height-integrated ionospheric conductivity, i.e., the ionospheric conductance, is assumed to
have two components: one is a background conductance of solar radiation origin and the other is due to
precipitating particle bombardment. For the background conductance, we employed the model originally
developed by Tarpley (1970) and improved by Richmond et al. (1976). For the auroral enhancement, we use,
for the first time, a realistic ionospheric conductance distribution derived from DMSP-F6 bremsstrahlung
X-ray data. However, since X-ray data are not available during the entire period analyzed in this re-
port, we employed the University of Alaska conductance model (Ahn et al., 1983) whenever an X-ray image
is not available. The model was constructed by defining empirical relationships between the Pedersen and
Hall conductances obtained from published Chatanika radar data and the magnitude of the horizontal com-
ponent of magnetic disturbance at College, Alaska.

In Part II we discuss the basic concepts used in estimating the conductance distribution from X-ray
image data and some data manipulation procedures. A comparison between the Rice University conductance
model (Spiro et al., 1982) and the University of Alaska conductance model is also presented. Hereafter,
we refer to the two models as Rice model and UA model, respectively,

(3) Electric Potential

According to Kamide et al, (1981), the electric potential & can be expressed in terms of the equiva-
lent current function ¥ by using a two-dimensional, second-order partial differential equation,

X%, 03, . 3% d
—+ C D —= F(¥,8,A
Aot Bagt C ot Dan fwen (3)

where coefficients A, B, C and D are functions of the Pedersen and Hall conductances and their gradients
with respect to the ¢ and X\ directions. Using the equivalent current function and conductance distri-
bution obtained in the previous sections as input data, the above differential equation is solved numeri-
cally with approximate boundary conditions,®(Q ,x) = 0 and d3a( 7/2,2)/3¢ = 0. The associated elec-
tric field is derivable from the electric potential distribution thus obtained.

(4) TlIonospheric Currents and Field-Aligned Currents

The ionospheric current J is related with the electric field E and the ionospheric conductance, EZH
and E:pthrough Ohm's law:

J=FE+2yExnr (4)

where np 1s a unit radial vector. From the requirement that the three-dimensional current be divergence
free, the field-aligned current density Iy (positive downwards) can be calcutated as

Jy  =divd = div g, (5)

We also show the Pedersen and Hall components of ionospheric current and field-aligned current
separately.




(5) Joule Heating Rate
The height-integrated Joule heating rate is defined by
ug =4 E (6a)
2

PN

The Joule heating rate in the entire ionosphere of the northern hemisphere Uj can then be obtained by
integrating uy as

U =foJ a2sing dg d (6b)

4, MAGNETIC ACTIVITY RECORDED ON JULY 23-24, 1983

#

On the lower panel of Figure 3 are plotted the envelope of the aXm values recorded at 44 stations
between 55° and 75° in corrected geomagnetic latitude for July 23 and 24, 1983, The upper and lower
traces are comparable to the standard AU and AL indices from 12 observatories, The difference, shown in
the top panel, is similar to the standard AE (= AU-AL).

The two day interval is characterized by intense magnetic activity in the polar region including
both magnetospheric substorms and enhanced magnetospheric convection. The preceding day (22 July 1983)
was very quiet until a relatively strong substorm occurred late in the day. The first substorm appears
to commence at 0905 UT on the 23rd as both AU and[ Aq rapidly increase. The interval following 1130 UT
is extremely interesting as both the AU andl Aq indices gradually increase until about 1800 UT while the
interplanetary magnetic field (IMF) was strongly northward. Thus the magnetic activity resulted from
increased, and in some cases reversed, magnetospheric convection. After 1800 UT, the IMF turned south-
ward and a period of almost continuous substorm-like activity persisted until 0800 UT on the 24th, After
this, a sequence of substorms occurred. It is also interesting to point out that indices of magnetic
activity, electric fields and precipitating auroral particles during the period were not in good agree-
ment (J.C. Foster and D.S. Evans, private communication).

5. EXAMPLES

As an example, the output plots for the epoch at 2015-30 UT on July 23, 1983 are shown in Figures 4a
- 4k, during which a continuous auroral activity was observed. The AE index was 839 nT, the IMF B; was
~-11 nT and By was -23 nT.

The distribution of the equivalent ionrospheric current vectors shown in Figure 4a was obtained
simply by rotating the observed magnetic disturbance vectors 90° clockwise. The current vectors of the
stations below 50° in corrected geomagnetic latitude are placed on the 50° latitude circle, The current
pattern is characterized by an intense westward electrojet flowing in a wide local time sector and maxi-
mizing in the morning sector. Although less prominent than the westward electrojet, one can also notice
that there is a well-developed eastward electrojet from noon to premidnight.

Iso-intensity contours of the calculated external current function (the so-called equivalent iono-
spheric current system) and the associated equivalent current vector plot are shown in Figures 4b and 4c,
respectively, The current vectors are plotted at grid points every 1° in latitude and 1 hour in local
time. From Figure 4b, one can see a well-developed two-cell current pattern, In interpreting the equiv-
alent current vectors given in Figure 4c, it should be mentioned that there are uncertainties over the
regions where there are absence of recordings, particularly in the large gap in the surface magnetometer
data over the Arctic Ocean and eastern Siberia. However, Ahn et al. (1984) showed that such a non-
uniform distribution of observatories did not seriously compromise the accuracy of the large-scale
current distribution,

Smoothed isocontours of Pedersen and Hall conductances are shown in Figure 4d. A detailed
discussion of the data processing procedures is presented in Part II. As expected, significant enhance-
ments are found along the auroral region in both the Pedersen and Hall conductance distributions.
Comparing these plots with statistically determined ones {for example, the Rice model), one can notice
that the instantaneous distribution contains many more patch-like structures. The numerical value in the
right bottom corner is the maximum value of each plot. As is the case of Figure 4d the maximum value of
the Pedersen conductance during July is generally on the dayside and results from the solar UV contribu-
tion. Figure 4e shows isocontours of the electric potential calculated from the equivalent current
function (Fig. 4b) and the conductance distribution (Fig. 4d). The potential distribution pattern con-
sists of well-defined twin vortices with the highest and lowest potentials appearing in the early morning
and early afternoon sectors, respectively. The negative and positive numbers in the right-bottom corner
identify these two extreme values. The cross polar cap potential difference, one of the most important
parameters in the magnetosphere-ionosphere coupling and magnetospheric convection, is simply the sum of
the absolute value of the two extremes. For this epoch it is found to be 90 kV. During quiet periods,
it is difficult to estimate the cross polar cap potential difference, because the extremes are not easily
determined.




By comparing Figures 4e and 4b, one can notice that the electric potential pattern is quite similar
to the equivalent current system. This seems to contradict the results of previous studies (e.g., Kamide
et al., 1982 and 1983) which attributed the discrepancy in the patterns at or near auroral Tatitudes to
result from non-uniform distribution of ionospheric conductance. As demonstrated in Part II, however,
the apparent disagreement between conclusions reached in Kamide et al. (1982; 1983) and those presented
here result from the use of statistical models of conductance which cannot accurately describe the con-
ductance patterns for any given instant in time and thus do not represent the fine structure of the real
situation.

Figure 4f shows the electric field vectors computed at our grid points. It is clearly seen that the
dominant direction of the field in the polar cap region is dawn to dusk while the direction in the west-
ward and eastward electrojet regions is predominantly southward and northward, respectively.

Figure 4g shows the distribution of calculated or “true" ionospheric current vectors. Although the
gross distributions of the equivalent and 'true' ionospheric currents are similar, there are significant
differences both in the current direction and strength, For example, the equivalent currents of the
electrojet region are aligned in the pure east-west direction, but the 'true' ionospheric currents have a
considerable north-south component. In Figure 4h we compare the Pedersen and Hall currents, separately.
It is evident that the Hall currents are remarkably similar to the equivalent currents while the Pedersen
current pattern is quite similar to that of the electric field in Figure 4f.

Figure 41 shows the distribution of the Joule heating rate. By comparing it with the ionospheric
current distribution in Fig. 4g, one can notice that the major heating regions are closely associated
with the auroral electrojets. It is interesting to note that no significant heating is found around
local midnight sector. Such a trend has been reported from the Chatanika radar measurement (Banks,
1977). In the left-bottom corner, the total Joule heating rates integrated from the pole to 80°, 70°,
60° and 50° in latitude are listed in Watts. For this epoch they are 0.34 x 10tl, 1.62 x 101l 2,60 x
1011 and 2.63 x 10ll Watts, respectively, most of the heating occuring within the latitudinal zone
beween gO° and 80°. The number in the bottom right corner notes the maximum heating rate calculated in
Watts/me,

Finally, in Figure 4j, we show the isocontours of the calculated field-aligned currents where the
solid and the dashed lines denote downward and upward currents, respectively. One can easily recognize
the Region 1 and Region 2 currents of Iijima and Potemra (1978). The high-latitude current system on the
dayside and associated with the polar cusp is also apparent. In the bottom right corner are the maximum
computed upward (negative) and downward (positive) current density values. In Figure 4k we also show the
Hall and Pedersen components of the field-aligned currents. As expected, the Pedersen component
resembles the total field-aligned current and the Hall component is relatively small.
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PART i

1. TIONOSPHERIC CONDUCTANCE DISTRIBUTION

Gorney et al. (1985) reported a numerical technique to provide an estimate of incident auroral electron
spectra inferred from satellite observations of bremsstrahlung X-ray spectra. The technique utilizes a
maximum-entropy estimate for the inferred electron spectrum based on discrete observations of bremsstrahlung
spectrum, Based on the estimated auroral electron spectra, the conductivities are computed from steady state
ionization profiles derived from the altitude profiles of energy deposition after Vickery et al. (1981). The
X-ray technique provides a reasonable representation of the important incident electron spectral parameters
and enables one to estimate the ionospheric conductance. Further, a scanning X-ray detector 1ike the one
flown on the DMSP-F6 satellite is able to image a large portion of the electron precipitation in both sunlit
and not sunlit conditions while the particle detector can only provide data along the satellite orbit, We
applied this method to the bremsstrahlung X-ray measurement from the Aerospace X-ray spectrometer on DMSP-F6
satellite for July 23-24, 1983,

In spite of the great advantages of an X-ray imager in estimating large-scale ionospheric conductances
over other methods, there are several shortcomings inherited from the orbital characteristics of the satellite
and the limitations of the instrument on board, Firstly, in ts dawn-dusk low-altitude polar orbit, the
instrument field of view is limited to about 3,000 km from one limb of the earth to the other, covering the
major portion of aurora only at the best viewing situation. Secondly, since the geomagnetic axis is tilted
11° away from the rotational axis and the inclination of the satellite is 99°, the satellite ground-tract
footprint may miss the magnetic dawn-dusk meridian point by as much as 20°, leaving a significant portion of
nightside or dayside aurora out of the field of view. Thirdly, the DMSP X-ray spectrometer uses satellite
motion to image the polar region, thus, one image takes 17 minutes and consecutive X-ray images of a
hemisphere are acquired once an orbit or about 100 minutes apart. However, since remarkable auroral conjugacy
has been established (Akasofu, 1977 and references therein, Mizera et al., 1987), the images taken over the
southern polar region have also been utilized in this study as though they were taken over the northern
hemisphere, Thus we have a 17 minute image every 50 minutes. Fourthly, it is difficult to apply the X-ray
remote sensing technique at energies less than 1.5 kV. However, the exclusion of the low energy portion of
the spectrum does not significantly affect the estimate of Hall and Pedersen conductance since such particles
do not penetrate deep enough in altitude to contribute more than 10% to the E region conductance. Low signal-
to-noise ratios limit the X-ray technique to measurements of conductance values greater than 5 mhos for Hall
and 2.5 mhos for Pedersen conductance,

2. DATA PROCESSING TECHNIQUES

To construct a global ionospheric conductance distribution, we used all the information available
from the image whether above the instrument threshold or below it. Then we employed the following tech-
niques to fill gaps in coverage of the instrument, We completed the polar region distribution which was
not imaged by the DMSP instrument. Sometimes the data gap appeared in the midnight portion and sometimes
in the dayside portion of the auroral oval. The gaps in the midnight sector were filled by interpolating
the data recorded in dawn and dusk sectors for that image. The dayside gaps were filled by extrapolating
{or stretching) the available data in the dawn and/or dusk sectors, recognizing that a minimum in conduc-
tance occurs near 1400 MLT (Fuller-Rowell and Evans, 1987). Values below the threshold have been filled
with special care to keep eitherextrapolated or interpolated values below that threshold. Figure 5 shows
an example of the jonospheric Hall conductance distribution based solely on the recorded X-ray image (a),
after the data gaps have been filled (b), and after the solar UV contribution is added (c).

Occasionally the X-ray image is not available or all pixel values are significantly below the threshold
values or the instrument views only a small portion of the dayside oval. In such cases we substitute the
entire conductance distribution of that time with one from an empirical model. To decide which model is
suitable for this purpose, the cross-polar cap potential differences, ¢ , based on different conductivity
models are compared with those based on the realistic distribution from the available X-ray images because
the electric potential distribution is most sensitive to the choice of the conductivity model. For this
purpose we used the models reported by Spiro@et al. (1982) and Ahn et al. (1983).

The Rice University conductance model described in Spiro et al. (1982) was adjusted, as suggested by
Kamide et al. (1982), by shifting the latitude of the maximum Hall conductance to the latitude of the equiv-
alent. current maximum when necessary., The search for the difference between the two maxima has been further
restricted to the latitude zone between 55° and 75° since the auroral enhancement is usually found in that
region. Figures 6 and 7 show the ionospheric Pedersen conductance distributions and the calculated elec-
trical potential distributions for 0355-0410 UT on March 24, 1983. One can notice that all three distri-
bution patterns of the electrical potential consist basically of a well-defined, two-cell convection pattern.
The estimated cross-polar cap potential differences are 95, 96 and 79 kV for the DMSP X-ray image, UA and
Rice University conductance distributions, respectively., The unusually high positive potential cell of 90
kV in the evening sector below 60° latitude of the potential distribution based on the Rice model results
from an unrealistically low conductance value of the model in that region. In determining the cross-
polar cap potential difference of the potential distribution based on the Rice model, we took the posi-
tive cell value in the dawn sector of 35 kV instead of the lower latitude value. Such a modification is
quite often needed in the potential distribution based on the Rice model. Due to the underestimation of
the potential difference and the ambiguity encountered frequently in determining the extreme value of the
electric potential distribution for the Rice model, we have used the UA model in this report to substi-
tute for the realistic conductance distribution whenever the images are not available.
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PART llI

Table 2 lists the time periods for processing the magnetometer data, i.e., within 5 minutes of a polar
crossing of the DMSP-F6 Satellite and presented in this report and the availability of the X-ray imagery.
The second column of the table shows the scanning time of the instrument and the third column lists the four
5-minute data values of geomagnetic variations used in the calculation. All plots in this report are based
on the average magnetic variation during the four 5-minute intervals rather than the time of each individual
scan or within the scan period. The fourth column indicates the X-ray data availability, with 'N' and 'S’
showing the hemispheric location of the satellite. A question mark is added when an image is available but
does not contain enough information to use. Whenever the X-ray data are not usable, the UA conductance model
is employed.

Except for the distributions of equivalent ionospheric current vectors and electric field vectors shown
in Figures 4a-k, we show all the other outputs for the 57 events in this Part. Thirty of the events are based
on the realistic conductance distribution and are captioned with “DMSP." The outermost circie is 50°N in

corrected geomagnetic coordinates, with other latitude circles spaced every 10°. Date and UT are marked on
each diagram,

Table 2. The time period processed in this report and the X-ray image availability.

July 23, 1983 July 24, 1983
Scanning Processed Scanning Processed
No. Period (UT) Period (UT) Hemisphere No. Period (UT) Period (UT) Hemisphere
1 0001-0017 0000-0015 N 30 0031-0048 0030-0045 S
2 0052-0108 0055-0110 S 31 0119-0136 0120-0135 N
3 0145-0200 32 0211-0228 0210-0225 S
4 0232-0248 0235-0250 S 33 0302-0319 0305-0320 N
5 0322-0338 0325-0340 N 34 0352-0408 0355-0410 S
35 0442-0459 0445-0500 N
6 0415-0430 36 0531-0548 0530-0545 S
7 0505-0520 37 0622-0638 0620-0635 N
8 0555-0610 38 0711-0727 0710-0725 S
9 0645-0700 39 0802-0818 0800-0815 N
10 0732-0748 0735-0750 S
40 0852-0908 0850-0905 S
11 0824-0840 0825-0840 N 41 0941-0958 0940-0955 N
12 0913-0929 0915-0930 N 42 1031-1047 1030-1045 S
13 1004-1020 1005-1020 N 43 1126-1143 1125-1140 N
14 1054-1110 1055~1110 S ? 44 1215-1232 1215-1230 S?
15 1146-1202 1145-1200 N
. 45 1305-1322 1305-1320 N
16 1240-1255 46 1358-1415 1400-1415 S?
17 1330-1345 47 1450-1505
18 1420-1435 48 1540-1555
19 1510-1525 49 1630-1645
20 1600-1615
50 1720-1735
21 1652-1708 1650-1705 N 51 1810-1825
22 1745-1800 52 1900-1915
23 1834-1851 1835-1850 N 53 1950-2005
24 1925-1942 1925-1940 - S? 54 2040-2055
25 2015-2032 2015-2030 N
55 2130-2145
26 2109-2126 2110-2125 S? 56 2220-2235
27 2157-2214 2200-2215 N 57 2310-2325
28 2251-2307 2250-2305 L B et T E L LR b Dt e et i
29 2339-2356 2340-2355 N
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